1/0
AI能为脑疾病带来什么?这场论坛提到控制梦境、收集脑电数据
澎湃新闻2023-04-12 16:53:00

“面对发展一日千里的人工智能(AI)新技术,作为一名神经外科大夫,我并不担心会失业,更关心如何拥抱AI,更好地服务患者,还能让我们医生早点下班。比如AI辅助问诊、辅助分析大脑影像和脑电数据,制定手术方案等,再比如从AI全新的视角审视,打破人脑研究人脑的主观性障碍,早日攻克脑疾病。”近日,由天桥脑科学研究院(TCCI)携手国家神经疾病医学中心华山医院、国家精神疾病医学中心上海市精神卫生中心联合主办的AI助力攻克脑疾病研讨会上,华山医院院长、TCCI转化中心主任毛颖教授如是说。

会上,来自人工智能(AI)、临床医学领域的专家就AI如何助力脑疾病研究的问题,进行了积极交流。

AI助力攻克脑疾病研讨会。主办方 供图

AI能为神经性疾病带来什么?

人工智能科学家胡鹏伟博士指出,AI在医疗领域的应用场景极为广泛,目前主要实现三大功能:减轻重复劳动负担、识别人工难以察觉的痕迹和线索,以及在复杂环境中进行线索分析。AI在精准医疗方面也有巨大潜力,GPT的总结与归纳能力在早期检查与诊断、院外情感支持及辅助、大数据分析与模式识别等方面已经显现出强大实力。胡鹏伟预测,凭借AI技术和可穿戴智能设备等的结合创新,精准医疗有望在3-5年内完成它的最后一公里。

复旦大学附属华山医院神经外科副主任、功能神经外科带头人陈亮教授在此次会议上,重点介绍了侵入性脑电数据库的建设以及增强AI技术在脑功能破译中的应用前景。

陈亮介绍,侵入性脑电指的是将电极植入大脑或置于大脑表面,以获取高信噪比的脑电数据。这类数据在神经科学和神经外科领域具有至关重要的价值,因为神经元放电是神经细胞最基本的活动方式。通过建立高密度表面或深部电极,研究人员期望收集更多关于脑电活动的数据。

陈亮以帕金森病患者为例说道,临床医生迫切需要通过大量颅内刺激实验来寻找最佳治疗方案,但这种方法对患者造成的负担较重。他希望借助增强AI技术完成耗时且重复性较高的工作,能协助解决尚未解答的科学问题,包括癫痫溯源预警和意识转化。

随着老龄化的发展,阿尔茨海默病(AD)是当下关注的重点疾病之一。

复旦大学附属华山医院神经内科副主任、国家神经疾病医学中心认知障碍方向带头人郁金泰教授指出,为实现AD早期诊断,有必要建立大型队列,尤其是社区队列,以便识别临床前阶段的患者。

“GPT模型在疾病管理方面的潜力,如搭建疾病管理平台,实现患者个体化病情评估、自动化分析报告、智能随访问答等功能,以提高医疗自动化水平。”郁金泰提到,GPT在AD诊疗与研究领域面临诸多挑战,如高质量医疗数据的缺乏、数据安全性问题、回答时效性是否会受训练数据影响等。但他同时认为,通过不断深化研究与实践,AI有望在AD领域发挥关键作用。

复旦大学附属华山医院睡眠障碍诊疗中心执行主任于欢教授则表示,睡眠障碍对生活质量影响很大,如会导致脑血管意外、痴呆等。

“目前,多导睡眠监测是睡眠障碍诊断的标准技术,但其成本高且效率低。因此,研究者们期待通过人工智能技术改进诊断方法。”于欢教授介绍了梦境研究在睡眠障碍领域的应用,如通过控制梦境提高记忆力,“目前已有超过150种编码和计算梦境的方法,研究者们希望借助AI技术制作一个实用性更强的研究工具,同时开发移动客户端以鼓励个体记录和分享自己的梦境,从而进行更贴近日常生活的梦境研究。”

AI如何助力抑郁症等精神疾病诊断?

AI如何助力抑郁症等精神疾病的诊断,也引起了诸多与会专家的讨论。

上海交通大学计算机科学与工程系副教授吴梦玥认为,开发基于人机对话的抑郁症问诊机器人,以及利用语音和语言特征构建症状与精神疾病知识图谱,是未来抑郁症早诊早治的方向。

吴梦玥表示,很多精神疾病的诊断主要依赖于面对面的问诊和交谈,理论上,模型也应该能够学会这个技能。同时,语音和语言作为客观生物标记物,在《精神疾病诊断和统计手册》(DSM-5诊断手册)中已经被用于诊断抑郁症等精神疾病。开发基于人机对话的抑郁症问诊机器人,通过深度交流,人机对话能够得到与医生所得到的同样精确的症状描述。

她还介绍了如何将语音和语言特征作为可计算、可迁移的方式,以及通过患者的自我表达建立症状和疾病的知识图谱,为多种疾病检测提供了新的思路。

上海市精神卫生中心心境障碍科主任彭代辉教授在会议中介绍,他正带领团队开展一项重大科研项目“抑郁症的前瞻性临床队列研究”,旨在收集全国范围内的抑郁症患者数据,创建一个多中心、规范化、标准化的大规模长期病例数据库。目前,该团队通过脑影像学和临床神经心理评估两个维度相结合初步构建了抑郁症脑功能网络诊断与分型模型。他们拟进一步运用数字表型技术,包括音频、视频、脑电和眼动等多维度立体大数据进行特征提取、筛选和建模。

彭代辉表示,这种多维度立体大数据可能提高抑郁症诊断的精准度,优化筛查评估方法以及风险事件预测。而大数据与人工智能技术相结合,在为患者提供敏感和特异的诊疗方案中有着巨大潜力。

上海交通大学生物医学工程学院林关宁教授展示了通过持续优化GPT的训练和规则设定,将GPT技术应用于心理健康和脑科学研究领域所取得的成果。

在压力、抑郁症和自杀风险检测方面,林关宁研究团队通过改进提示工程(Prompt Engineering),实现了GPT准确性的提升,已能初步实现准确的分类和预判。团队还成功地从非结构化文本中提取了结构化信息,通过为GPT提供规定模式,实现了将这些信息规范地存储在数据库中,为未来研究和临床实践提供了宝贵数据。

尽管在应用过程中遇到了一些挑战,如API接口局限性等,但林关宁教授相信,像GPT等大型语言模型在心理健康和脑科学研究领域将发挥越来越重要的作用,很快将有能力处理除文本语言之外的数据,如影像、脑电、生物组学等多模态的数据,并推理数据之间的内在逻辑,这将为现有的科研范式带来革命性变革,并推动心理健康和脑科学研究领域的快速发展。

知识产权、免责声明以及媒体合作联系
继续了解
知识产权声明

【知识产权声明】

除本司(指上海东方网股份有限公司)另行声明外,本司网页及客户端产品(以下简称“本网”),包括但不限于东方新闻、翱翔、东方头条等,所涉及的任何资料(包括但不限于文字、图标、图片、照片、音频、视频、图表、色彩组合、版面设计、商标、商号、域名等)的知识产权均属本司和资料提供者所有。未经本司书面许可,任何人不得复制、转载、摘编、修改、链接、镜像或以其他任何方式非法使用东方网的上述内容。对于有上述行为者,本司将保留追究其法律责任的权利。

东方网、东方新闻、翱翔,以上均为本司享有权利之合法商标,未经本司书面授权,任何单位或个人不得使用上述商标,或将上述商标用作网站、媒体名称等。

【免责声明】

1、凡本网注明来源“东方网”或“东方新闻”或带有东方网LOGO、水印的所有内容,包括但不限于文字、图片、音频视频,版权均属本司所有,任何媒体、网站或其他任何形式的法律实体和个人未经本司书面授权均不得转载、链接或以其他方式复制传播。与我司签订有关协议或已经获得本司书面授权许可的媒体、网站或其他任何形式的法律实体和个人,应在授权范围内使用,且必须注明来源“东方网”。其目的在于传递更多信息,并不意味着本司赞同其观点或认可其内容的真实性。如果其他媒体、网站或其他任何形式的法律实体和个人使用,必须保留本司注明的“稿件来源”,并自负全部法律责任。如擅自篡改为“稿件来源:东方网”,本司将依法追究责任。

2、擅自使用东方网名义转载不规范来源的信息、版权不明的资讯,或盗用东方网名义发布信息,设立媒体账号等,本司将依法追究其法律责任。

3、鉴于本网发布主体、发布稿件来源广泛,数量较多,如因作者联系方式不详或其他原因未能及时与著作权拥有者取得联系,或著作权人发现本网转载了其拥有著作权的作品时,请主动来函、来电与本司联系,或与本司授权的中国文字著作权协会联系,提供相关证明材料,我方将及时处理。
中国文字著作权协会联系方式:
联系人:赵洪波 唐亚静
地 址:北京西城区珠市口西大街120号太丰惠中大厦1027-1036室
联系电话:010-65978917
邮 箱:wenzhuxie@126.com

4、本网所有声明以及其修改权、更新权及最终解释权均属本司所有。

【媒体合作】

本司为尊重保护著作权,鼓励有益于社会主义精神文明、物质文明建设的作品的创作和传播,促进互联网良性发展,本着平等互惠、资源共享的原则,诚邀各类媒体、网站、单位、个人与本网建立友好的合作关系。
媒体合作、内容转载请联系
联系人:杨老师
联系电话:021-22899781